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Abstract. The kinematics of the relativistically rigid motion of a surface is investigated 
in a Lorentzian manifold and the influence of the rigidity conditions on the congruence 
of the world lines of the points of that surface is examined. 

1. Introduction 

The superficial rigid surface considered by Pounder (1954) in special relativity, accord- 
ing to a definition of Synge (1954), has been called forth by Vigier (1979) to account 
for Aspect’s experiments (1975) by introducing the superluminal propagation of the 
quantum potential so as to justify non-local interactions between measurements 
separated by space-like intervals. 

However, the treatment of Synge is not manifestly covariant and results obtained 
are restricted to slow motions, whereas the motions discussed by Pounder ‘are very 
special and relate rather to the question of corresponding rigid surfaces’. It is therefore 
our purpose to give here a general kinematical study of rigid motions of a surface in 
a Lorentzian manifold and to characterise the allowed types of motion. 

We give in 9 2 a local definition of the rigid motion of a surface Z, in strict analogy 
with the Born (1909) criterion of rigidity of relativistic bodies, which recovers that of 
Synge. We examine in § 3 the properties of the time-like congruence Vu formed by 
the world lines of points of E. Some particular cases are also investigated. Concluding 
remarks follow in 9 4. 

2. Definition of superficial rigidity 

Let us consider in a Lorentzian manifold of metric gab the time-like congruence Wu 
formed by the world lines tangent to the four-velocities u a  of points of a surface Z: 

unua = -1. (1) 

The connecting vector T~ of Ce, satisfies 

= U bv ;b - 77 ‘ U  fb 

where 9, is the Lie derivative with respect to u a  and the semicolon stands for covariant 
differentiation. On the other hand, the hypersurface F ( x “ )  generated by E and Wu is 
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such that 

2 > ( x " ) = u b  abF(x")=O, a b  = a/ax 

The vector field n a defined by 

(3) 

satisfies 

nana = 1, uana = 0. (46) 

Let h f :  (resp f : )  be the projection operator onto the hyperplane n, normal to u a  
(resp the plane P,,, normal to ua and n a ) ,  

b b f a  b b  = h a  -nan b h:=6a+uau 9 

The tensors hab = hihtgcd and f o b  = fyigcd play the role of the metric in nu and P,,, 
respectively; they serve to define the orthogonal distance of two world lines, i.e. the 
length of the projection of the connecting vector either in n, or in P,,,,. 

In accordance with Born and Synge, the motion of a surface 5 is said to be rigid 
if the orthogonal distance of the two world lines of two arbitrary neighbouring points 
of X is invariant during the motion: 

% ( f a b V a T b ) = O  (6) 

z d a b  = U a , b  U b ; a  + U a U b  f UbUa - n z u n b  - n z u n a  = 0 (7) 

which gives on account of (2) 

b where U, = U  &;b. These ten equations are not however all independent; we have 
identically, on account of (4), 

U b 2 d a b  E 0 ,  n an b 2 1 f a b  = 0. ( 8 4  b )  

Thus, only five of the equations (7) are independent and may serve to determine the 
five independent components of u a  and n a  constrained by uaua = -1 = -nana and 
uana = 0; in consequence, the usual degrees of freedom of the surface all remain 
available. 

On the other hand, we have 

n = - g a z U n  + n - n bz,nbn, = 0 ,  (9a 1 
whence 

(9b) 2 , n a  = A u a + B n a ,  A = n ub, B = -n"n U,;(,. 

Therefore during the rigid motion of X the vectors U a and n a are two-surface forming. 

T u n a  = -Bn, (10) 

b b 

On the other hand, we have 

as, on account of the hypersurface orthogonality of n a,  

nra;bnCi = 0 

which gives, after multiplication by U bn ', 
b b  b b  2n[ , ;b]~  = U  na;b +nbu:, = n ncub;cna. 
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3. Properties of Vu 

Now, we introduce the decomposition of u a ; b  into the shear (Tab, the expansion 8, the 
vorticity W a b  of %,, by 

By contraction equation (7) gives 

B + 3 8 = 0  
and 

(+ah = i ( n 2 u n b  + n Z u n a )  - 8 h a b  

(Tab = 28nanb - @fab. 

(14) 

whence, on account of equations (10) and (13), 

(15) 

is counterbalanced Thus n a  is a shear eigenvector and the overall expansion 8 of 
by G a b  = f y f u c d  on the surface, so that the motion of X is rigid. 

As for the vorticity vector w a, 

(16) 

it remains arbitrary. In general the unit vector r a  = w ~ / / w ~ /  is not tangent to F(x") ;  
however, when rana = 0, we may define a vorticity congruence and extend to it 
Greenberg's results (1970). 

Special cases of interest are obtained when r a  is Fermi transported ( f a  = rbribua) 
or Lie dragged (2',,ra = 0). 

1 ahcd 
W a  =?q u b m c d ,  

Remark 1. The condition for the vectors orthogonal to u a  in the hypersurface F ( x a )  
generated by X and %,, to be two-surface forming is 

p b q : b - q b P ; b  =spa + p q a  (17) 
for any two independent vectors p a  and q a  tangent to F ( x a )  and orthogonal to ua .  
This implies 

(18a) 

f : f f n [ c ; d ] = O  ( 1 8 b )  

f : f f u [ , ; d ]  = O e w a n a  = o 
and 

which is identically satisfied as n a is hypersurface orthogonal. 

Remark 2. A superficially rigid congruence WU may be said, following Ehlers (1961), 
to be superficially isometric when U a is parallel to a Killing vector of the hypersurface 
F(x "), i.e. 

(19) Z U  ( g a b  - flan b = 0, U" = ehua. 

The comparison of equations (7) and (19) gives 

U, = a a A ,  A = o .  (20) 
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Thus, the congruence is superficially isometric if and only if 

= 0. 

4. Concluding remarks 

It appears therefore that superficial rigidity restricts the possible types of motion of 
a surface C by relating the shear and the expansion of the rigid congruence by equation 
(15). It does not impiy, as in the Newtonian case, the nullity of those quantities. 

The particular motions considered by Pounder may be obtained by the following 
additional requirements: C is a surface of revolution and the vorticity unit vector r a  
lying along the axis of revolution is Lie dragged. 

As for the superluminal propagation of the quantum potential contemplated by 
Vigier, it does not follow directly from the above considerations; it requires further 
investigations. 
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